ITER ELM Plasma Simulator A Promising Component of the US PFC Materials Test Program

or

Mark II Plasma Disruptor

R. Stubbers¹, T.K. Gray², B.C. Masters², D.N. Ruzic²

¹Starfire Industries LLC ²University of Illinois, Plasma-Material Interaction Group

Overview

- Need for an ELM plasma simulator
- Phase I proof-of-concept conical theta pinch ELM simulator
- Scaling to ITER ELMs in Phase II
- Phase II-III, ELM plasma simulation user facility

Why Study ELMs?

- Why do we need this facility?
- Vapor barrier/macro particle formation
- Test plasma-material interaction physics
- Augment and enhance existing US PFC programs
- Future development base

Fits into US Contribution to ITER

- The NEED
 - Advantageous tokamak H-modes accompanied by ELMs
 - Apples-to-apples measurement of ELM <u>plasma</u> material interactions is desired
 - Experimental facility for high-fidelity ELM plasma simulation facility is needed
- Opportunity
 - Complete PFC characterization suite including accurate ELM plasma simulation
- Sandia-Albuquerque has e-beam cyclic high-heat flux and lifetime testing – accurate thermal loading and profile of ELMs
- Argonne modeling for ELM plasma surface interactions
- UCSD is a beryllium mixed material test bed and steady-state plasma exposure tests
- UIUC completes picture with ELM plasma simulation facility
 - Thermal Cycling
 - ELM event physics
 - Steady-state divertor plasma loading
 - Divertor ELM particle loading and erosion

Phase I Facility

- Quick and inexpensive proof of concept
 - Use a conical theta pinch to increase density and temperature of plasma
 - Use ringing PFN to get multiple pinches to simulate what an ELM looks like
 - Use multiple ringing PFNs to achieve ELM durations
 - Translate plasma into a target region with strong magnetic field

On a Phase I Budget

- Largely built with scrap and home-made equipment
 - Existing coil remachined to conical interior
 - Miscellaneous vacuum equipment
 - Left-over power supplies
 - Home-made trigger circuits
- A little help from e-bay, Starfire equipment and some new equipment
 - Maxwell trigger delays
 - Spectrometer
 - High-voltage probes
 - Glass pinch tube

Phase I — Pulse Length/Structure

- Multiple pulses To achieve ELM envelope
 - 0.1 to 1 msec time scale with primitive switching
 - Easily improved with better switching (clamping of pulse tail)
- Plasma blob subfrequency
 - − ~10-100 microseconds
- Plasma blob transport
 - Translation onto target
 - Velocity $\sim 5 \times 10^4 \text{m/s}$

Density and Temperature

- Density Scaling
 - Density ~5X10¹⁷/m³ at 5kV (0.69 kJ)
 - Measured 2X10¹⁸/m³ at 10kV (2.75 kJ)
- Temperature Scaling
 - − Measured ~25eV
- Magnetic Fields
 - 1-kG level Steady State
 - 1-Tesla pinch field
- Approaching NSTX level ELMs in Phase I

Thermocouple Heating

- Target Plate
- Insulated thermocouple embedded in copper foil
- Temperature rise due to RF plasma has been measured
- Provides means of confirming heating estimates from TLP measurement

Calorimetry Verification of TLP

- Temperature rise measurements confirm TLP Plasma measurements
- Both indicate ~0.5W
 plasma heating on
 copper plate with
 only target helicon
 plasma present

Thermal Calculation:

$$m \cdot C_{p} \cdot (T - T_{initial}) = (\dot{Q}_{in} \cdot t) - k \cdot (T - T_{final})$$
$$\dot{Q}_{in} = \frac{(m \cdot C_{p} + k) \cdot (T_{final} - T_{initial})}{t}$$

$$m = 0.341 g$$

$$C_p = 0.385 J / g \cdot K$$

$$k = 1.1J / K$$

$$t = 180 \sec$$

$$P_{thermal} = \dot{Q}_{in} = 0.5W$$

Plasma Calculation:

$$\begin{aligned} P_{Plasma} &= \Gamma \cdot A \cdot T_e \\ &= \frac{n \cdot \overline{v}}{A} \cdot A \cdot T_e \end{aligned}$$

$$n = 2 \cdot 10^{16} \, m^{-3}$$

$$T_e = 3.5 \, eV$$

$$A = 1 \, cm^{-2}$$

$$P_{Plasma} = 0.35W$$

Phase I Summary

- Phase I effort provided good proof of concept
 - Demonstrated subfrequency with ringing PFN
 - Demonstrated appropriate, adjustable effective pulse duration using sequentially-fired PFNs
 - Demonstrated plasma heating and translation to target

Scaling To ITER

- Expected ITER ELM
 Conditions (and desired
 ELM simulation parameters)
 - $\sim 10^{19}/\text{m}^3$
 - − ~1 keV temperatures
 - − ~1 ms duration
 - ~5 Tesla B fields (DC)
 - $\sim 10MJ/m^2$
- Present conditions in ELM simulator
 - $-2X10^{18}/m^3$
 - − ~25eV
 - 1 ms duration
 - 0.1 Tesla B fields (DC)
 - $\sim 10kJ/m^2$

ELM Parameter	ITER	NSTX	UIUC (present)
Power Loading	~10 MJ/m ²	<1 MJ/m ²	10 kJ/m ²
ELM Event Frequency	~1-10 Hz	10-20 Hz	Single shot
Total ELM Duration	~0.1-1 ms	~1 ms	1 ms
Blob Subfrequency	~10-100 kHz	~10 kHz	10 kHz
Temperature During ELM (~T _{pedestal})	1-2.5 keV	100 eV	20-40 eV*
Density During ELM (~n _{pedestal})	~10 ¹⁹ /m ³	~10 ¹⁹ /m ³	10 ¹⁸ /m ^{3*}
Divertor Field Strength (~B _t)	~1-5 T	~0.5 T	0.1 T

Theta Pinch Scaling

Ideal Case

- For ideal magnetic-kinetic pressure balance (perfect coupling), only ~700 Gauss is required to contain 1-keV 10¹⁹/m³ plasma
- Coupling efficiency depends on dI/dt (bank inductance) and magnetic diffusion time (preionization source density and temperature)
- Therefore, field in pinch region is already adequate

Energy Scaling

- Crude scaling: Energy flux out scales linearly with bank energy
- Based on this scaling and Phase I measured results, ~2MJ/m² could be achieved with 250kJ bank (200+ times the energy input)
- Present pinch field (4-10 kGauss with 10kV on bank) would be more than enough if coupling were better
- Crude scaling neglects improvements to coupling power levels on target could be even better.

Theta Pinch Scaling (cont)

- Coupling Improvement dI/dt Scaling
 - Phase I current rise times are $\sim 13\text{-}17\mu\text{s}$ very long compared to an estimated magnetic diffusion time of $\sim 1~\mu\text{s}$.
 - Decreased bank inductance (~20nH/capacitor compared to ~500nH/capacitor) will lead to a rise time less than 1/10th present value.
 - dI/dt can increase further if capacitors are connected in parallel (likely with 2 μ F capacitors), and operated at higher voltage (60 kV instead of 10kV)
 - Magnetic diffusion time can be increased with improved preionization source.
- With pulse rise time near or less than the magnetic diffusion time, coupling should more closely resemble ideal case than linear case, and a factor of 10 or greater improvement can be expected

Phase II — ITER ELM Simulation

- Scale-up to reach ITER ELM demo
 - 250 kJ bank
 - 56 60-kV 2-μF capacitors (~20nH inductance each)
 - Bank divided into 4 independent PFNs
- Expected Phase II plasma parameters
 - Density $\sim 10^{19}$ /m³
 - − Temperature ~1keV
 - − Duration ~0.5-1ms
- An ITER ELM simulator can be built at Illinois

Phase II Plan

- Use Installed base at University of Illinois
- Utilize existing capacitor bank and set it up for 60kV operation at 250kJ.
 - Significant undertaking to build transmission line system.
 - Some transmission lines exist, but division of bank needed
 - Switching is a challenge at 60 kV
- New coil, magnet assembly and other components.
 - 5 Tesla field is also challenging
 - Will likely be pulsed (slowly)
- Two-year effort to demonstrate ITER-level ELM events
- Work toward Phase III ELM plasma test facility

Resources Almost There

- Joint Investment by
 - University of Illinois
 - Starfire Industries
 - STTR Program
 - DOE
- In-kind expenses already committed pending Phase II success
 - University of Illinois
 - Starfire Industries
- Plan for Phase II-III

Commercial Model

- ELM Test Facility in US
 - National Labs
 - Academia
 - Private Industry
 - International Developers
- University of Illinois is an ideal location
 - Center for Microanalysis of Materials (DOE user facility) –
 mutually complementary with ELM test facility
 - Centrally located
 - Existing equipment and know-how

Summary

- Phase I successfully demonstrated conical theta pinch ELM simulator concept
- Phase II ITER ELM demo Phase I data and scaling support ITER ELM simulation is possible with reasonable investment
- Good path toward ELM plasma simulator user facility after Phase II demo (Phase III)

Questions/Contact

Robert Stubbers
Starfire Industries LLC
rstubbers@starfireindustries.com